Index-aware Model Order Reduction Methods Applications to Differential-Algebraic Equations /

The main aim of this book is to discuss model order reduction (MOR) methods for differential-algebraic equations (DAEs) with linear coefficients that make use of splitting techniques before applying model order reduction. The splitting produces a system of ordinary differential equations (ODE) and a...

Full description

Main Author: Banagaaya, N.
Corporate Author: SpringerLink (Online service)
Other Authors: Alì, G., Schilders, W.H.A.
Format: Electronic
Language: English
Published: Paris : Atlantis Press : 2016.
Edition: 1st ed. 2016.
Series: Atlantis Studies in Scientific Computing in Electromagnetics, 2
Subjects:
Online Access: http://dx.doi.org/10.2991/978-94-6239-189-5
Tags: Add Tag
No Tags, Be the first to tag this record!
LEADER 02750nam a22005175i 4500
001 978-94-6239-189-5
003 DE-He213
005 20170323214013.0
007 cr nn 008mamaa
008 160220s2016 fr | s |||| 0|eng d
020 |a 9789462391895  |9 978-94-6239-189-5 
024 7 |a 10.2991/978-94-6239-189-5  |2 doi 
050 4 |a QA71-90 
072 7 |a PBKS  |2 bicssc 
072 7 |a MAT006000  |2 bisacsh 
082 0 4 |a 518  |2 23 
100 1 |a Banagaaya, N.  |e author. 
245 1 0 |a Index-aware Model Order Reduction Methods  |h [electronic resource] :  |b Applications to Differential-Algebraic Equations /  |c by N. Banagaaya, G. Alì, W.H.A. Schilders. 
250 |a 1st ed. 2016. 
264 1 |a Paris :  |b Atlantis Press :  |b Imprint: Atlantis Press,  |c 2016. 
300 |a IX, 86 p. 25 illus., 6 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Atlantis Studies in Scientific Computing in Electromagnetics,  |x 2352-0590 ;  |v 2 
505 0 |a Introduction -- Differential-Algebraic Equations -- Decoupling of linear constant DAEs -- Index-aware model order reduction -- Large scale problems -- Conclusion. 
520 |a The main aim of this book is to discuss model order reduction (MOR) methods for differential-algebraic equations (DAEs) with linear coefficients that make use of splitting techniques before applying model order reduction. The splitting produces a system of ordinary differential equations (ODE) and a system of algebraic equations, which are then reduced separately. For the reduction of the ODE system, conventional MOR methods can be used, whereas for the reduction of the algebraic systems new methods are discussed. The discussion focuses on the index-aware model order reduction method (IMOR) and its variations, methods for which the so-called index of the original model is automatically preserved after reduction. 
650 0 |a Mathematics. 
650 0 |a Computer science  |x Mathematics. 
650 0 |a Computer mathematics. 
650 0 |a Electrical engineering. 
650 1 4 |a Mathematics. 
650 2 4 |a Computational Mathematics and Numerical Analysis. 
650 2 4 |a Electrical Engineering. 
650 2 4 |a Mathematics of Computing. 
700 1 |a Alì, G.  |e author. 
700 1 |a Schilders, W.H.A.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9789462391888 
830 0 |a Atlantis Studies in Scientific Computing in Electromagnetics,  |x 2352-0590 ;  |v 2 
856 4 0 |u http://dx.doi.org/10.2991/978-94-6239-189-5 
912 |a ZDB-2-ENG 
950 |a Engineering (Springer-11647) 
999 |c 8118  |d 8118